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I. Formulation of the Problem. An incompressible reactive fluid located between two 
coaxial cylinders is brought into motion by internal and external cylinders rotating uni- 
formly with the angular velocities ~I and ~z" In the shear flow - which is assumed to be 
steady and laminar - temperature increases due to an exothermic reaction and viscous drag. 
The problem is to determine the thermal stability of the fluid in relation to its proper- 
ties, the dimensions of the channel, the boundary conditions, and the parameters of the 
flow. We will ignore the boundary conditions at the ends of the cylinders. 

The model being examined here can be encountered in different production processes 
In particular, it accurately models the determination of the viscosity of explosives in 
Couette-Gatchek viscometers [i]. 

The model is represented mathematically in the form 

at r or rTr + T  r'yr + ~ ( T ) ;  (1 1) 

e-; (rv) = 0, T (r, 0) = r o, R1 ~< r ~< B~; ( 1 2 ) 

o r  (n~, t) o r  (R~, 0 
a----; - - + h l ( T ( B ~ ' t ) - T o ) = O '  or + h 2 ( r ( B 2 ' t ) - - r ~  (1 3) 

v (r  = R~) = ~ R ~ ,  v (r  = R : )  = ~ B 2 ,  (1 .4)  

where t is time; r is radius; T is the temperature of the fluid; n is diffusivity; ~ is 
kinematic viscosity; c is heat capacity; v is the tangential velocity of the flow; R I 
and R 2 are the radii of the internal and external cylinders; h I and h a are constants; ~(T) 
is a function satisfying the conditions 9(T0) > 0, ag(T)/@T > 0. Without loss of 
generality, we assume that the rate of heat release obeys the Arrhenius law 

9(T) = Qz(pc) -~ exp ( - - E ( B T ) - ~ ) .  

Here ,  Q i s  t h e  t h e r m a l  e f f e c t  o f  t h e  r e a c t i o n s ;  z i s  a p r e - e x p o n e n t i a l  m u l t i p l i e r ;  E i s  
activation energy; p is density; R is the universal gas constant. 

After integrating (1.2) with allowance for (1.4) and introducing the dimensionless 

parameters 0 = E(T - T0)R-IT0 -2, T = tt= -I r = rra -I, RI = RI r=-1, R2 = R2r~ -I, fl = RT0 E-I, hl = 
hlra, h2 = h2ra, 9(0) exp (8(i + flO)-1), q = 4up(w 2 - ~I)2RI4R24(R22 - RIZ)-2(Qz) -I (t a = cpRT02 X 
(EQz) -I exp (E(RT0)-I), r a = (~%.)0.5) we reduce system (1.1)-(1.3) to the form 

- -  = -_ a~G = F, Ox r~ r  r~-r + A ( ? e x p ( ~ - I ) ; - 4 + a ~  + E n G(O, A); 
r ~ = l  

(1.5) 

@(r, 0) = 0~ a7 q- ~10 (~i, T) = 0, ~ q- h2~ (R2, T) = 0, (1.6) 

where # is a parameter from an interval containing zero; A is a parameter found from the 
relation G(0, 0, A) = ~ exp (~-i)~-4 + a0 ; an = l/n! x (6n/68n)9(O)] ~o are coefficients of 
the expansion df the function 9(8) into a series in powers of 8. 

In accordance with the central set theorem [2], infinite-dimensional problem (1.5)- 
(1.6) can be reduced to the space of finite dimensions without any loss of information re- 
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garding the stability of its solutions. The simplest method of reducing the dimensionality 
of an infinite-dimensional problem is the approach in [3, 4]. The latter is based on the 
use of projections of the solutions of the problem on the space of eigenfunctions. These 
projections are used in conjunction with the Fredholm alternative theorem. 

In accordance with this method, we introduce the auxiliary operators 

oe ~o (rOe) 2 ' 
= T o-~ ~ + a~e' = f (e, ~) = G (e, F, o); ( l . 7 )  

oo) oP (o,o) o ,~aF(o, o) 0, (1 8) oO I o - 

o~ 7 ~ r Tr + a~O = -  Oe + I~ oo o------~ 

for which conditions (1.6) are valid. 
To attract solutions of problem (1.5)-(1.6), with parameters distributed in R ~, to 

the space R 2, we construct the space of eigenfunctions of the generatrix of operator (1.8) 
with allowance for (1.6) and we determine the stability of the zeroth solution. We then 
project the solutions of bifuraction problem (1.7) and problem (1.5) (containing the 
parameter A ~ 0 which eliminates the bifuraction) on this space and we determine the 
stability of the solution of these problems. 

Within the framework of the formulation of the problem presented above, it is useful 
to point out that the assumption that the flow is steady and laminar is valid if the condi- 
tion of stability of a flow between rotating cylinders is satisfied [4]. When there ia a 
small difference [ ~ 2 - ~iI , this condition is given by the inequality [4] 

> I - _ ( m  

2. Zeroth Solution. The analysis of the stability of zeroth solution (1.5)-(1.6) 
reduces to a Sturm-Liouville problem involving determination of the eigenvalues of operator 
(1.8). The spectrum of operator (1.8) consists only of two discrete eigenvalues on=a~--L~,: 
where X n (n = I, 2,...) are positive roots of the equation 

i d o  - i ,  &No - -  N ,  l = 0 

(In(Xr), Nn(X~ ) are Bessel and Neumann functions of order n). 
The parameter # will henceforth be represented in the form of a function of the maxi- 

mum eigenvalue ol, # = #(al). However, we will do this in such a way that, in accordance 
with the definition, the interval of its values will contain zero. In the zeroth case, the 
solution is stable if # = a I - AI 2 < O. 

All of the eigevalues a n of operator (1.8) are paired, with each eigenvalue corres- 
ponding to two eigenvectors: 

Yln = I o ( L ~ ) ,  Y2n ~ c~No(~n~ 

(cn = (I~(k~R~) - -  h~Io(L~R~))~No(k~R~)  - -  N ~ ( L n ~ )  )-~). 

587 



The algebraic and geometric multiplicities of the eigenvalues a n are the same, so 
that the vectors Yi3 (i = i, 2, j = i, 2 .... ) are independent and can be used to construct a 
biorthogonal system on (R~, R2). It follows from this that any solution of (1.5), (1.7) re- 
duces to the form of an expansion in eigenvectors of operator (1.8). 

3. Bifurcative Solution. The introduction of Gram-Charlier transforms reduces the 
vectors yi3 to a biorthogonal system, so that the eigenvalue al will correspond to the 
orthogonal vectors 

Yn = Yn, Y~ = Y ~ x -  <Y2x, Yn r )  IlYlxl]Y~x, (3.1) 

where <Yij, Ynm > is the scalar product of the vectors Yi3, Y~, IIyijll = <Yi3, Yij r>. 
The space of the vectors Yij .(i = i, 2, j = i, 2 .... ) is a Hilbert space with the sca- 

lar product 

(Y*x• Y*2i are the vectors conjugate to Yli, Y2i). Since vectors Yij are orthogonal on (RI, 
R2) with the weight r, we choose the following as the vectors conjugate to Yn, Y21 

< t,i - - ,  - -  - -  _ 

Yil = y ~ r  Yli (i = t,  2). 

The subspace stretched over the vectors -Yll, ~V21 is orthogonal to the remaining part 
of the Hilbert space. Thus, any solution 8 = 8(#) of operator (1.7) can always be expanded 
into a part belonging to the two-dimensional null space of operator (1.8) and a part which 

is orthogonal to Y*II, Y'21. 
The solution of (1.7), with conditions (1.6), can be found in the form of a power 

series 

O =X enl @n (3.2) 

(a = <(8, O), (YlI, Y21) > is amplitude). 
Insertion of (3.2) into (1.7) and identification of the terms with independent powers 

of ~ leads to 

~Y (0,0) (~ = 0; ( 3 .3  ) 
o@ 

a2F((!,0) ~2F(0, it) 2 OF(I)'(OO2 + 2~1 01 + - - 0 1  0 (3 4) 

and equations with higher powers of a. It follows directly from (3.3) that the solution 
can be any linear combination e I = Y11 + $Y21 (~ is a parameter of the problem which is sub- 
ject to determination). Equation (3.4) can be solved only in the case when the conditions 
<aF(O, 0)/0882, Y*kl > = O, are satisfied for k = i, 2, these conditions being based on the 
Fredholm alternative theorem. It follows from this that 

29, <02F (0, 0)/80 0tt@,, y~> + <02F (0, 0)/002a{, y~> = 0 (k = t, 2L (3.5) 

The presence of two independent parameters #i and @ guarantees the existence of a 
solution to system (3.5). Insertion of expressions for 81, Y*kl (k = I, 2) into these equa- 
tions yields two equations of conic sections on the plane (#I, ~): 

gl(~l, /~) = Clll~ 2 -~ C12 q) -+- C13~1~b -~ C14~1 -~- C15 ---~ 0'; (3.6) 

g~(~l, *)  = c~l* ~ + c~2. + c ~ *  + c=~,~1 + c..~ = 0, (3.7) 
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where 

c~t 0,5 <O'~f 9-~ = <02E (O,O)/0@~U~tU.~ ' ~ > ;  = ( O , O ) / O O - y ~ ,  ~h~>; cn 

c,a = <O~F(O, O)/O(-)Op.y~i, y~>; e~ = <O~F(O, O)/OOO~,~, y~> ;  

= O),OO Y]I' ~11>; C21 = C15 0,5 <O'2F ((), / (~ 2--2 --* 0,5 <02F (0: 0)/C]02~1, ~:1);  

c~2 = <0~F(0,0)/00~t11~21 , Y*lJ; c~a = <O"F (0, 0)/000,@2:, y$,>; 

~ = <O"-F (0, o)/ae)a~.$~,, )$,); c~ = 0,5 < o ~  (o, o)/oo=~:, }$,>. 

By virtue of (3.1), ci3 = ca4 = O, and if (3.6), (3.7) are not degenerate, then (3.6) 
will always be a parabola and (3.7) will always be a hyperbola. The points of intersection 
of curves (3.6), (3.7) (#l(n), ~(n)) on the plane (~1, ~) are solutions of (3.4). Depending 
on the sign of the discriminant of equivalent system (3.6)-(3.7) of the cubic equation 

ba~ a ~- b2xp "~ 4- b~r q- b o = 0 

(b3 = 1, b2 = ( c 1 2 -  c14c21c2-31) Cll 1, 

~ = ( ~  - ~ , ~ ) r  ~o = - ~ . ~ 7 ~ 7 )  

(3.8) 

system (3.6)-(3.7) will have either three real solutions or one real solution and two com- 
plex-conjugate solutions. If the discriminant is equal to zero, then two or three real 
solutions will coincide. 

Numerous calculations performed at random points of the intervals 0.i _< Ri -< 2.4, 

0.8 < R2 -< 5, fl = 0.02, 1 _< hl -< 2, -2 _< h2 -< 2, hl = h2 >> i, showed that nondegenerate sys- 
tem (3.6)-(3.7) always has one real solution (determining the point of steady equilibrium) 
and two complex solutions (in which periodic cycles appear). Thus, at RI = i, R2 = 4.07, 

= 0.02, hl = h2 >> I system (3.6)-(3.7) has one real solution (#i (I), ~(i) = (-0.55,-0.24) 
(Fig. i) and two complex solutions (#i (z), ~(2)) = (0.25 + 0.25i, 0.13 + 0.16i) I, (3) ~h(3)~= 

1 \t~ 1 1 9" / 

(0.25 - 0.25i, 0.13 - 0.16i). At R1 = I, R2 = 2.55 and the same /3, hl, h2, (~ (1), ~(1)) = 
(0.30, 2.94) (Fig. 2), (#i (2), ~(a)) = (0.16 - 0.016i, 0.36 - 0.83i), (#i (3), ~(3)) = (0.16 + 
0.016i, 0.36 + 0.83i). 

The stability of solutions (1.6)-(1.7) should be analyzed at each point of intersec- 
tion of curves (3.6), (3.7) (#1 (n), ~b(n)), n = I-3. To do this, it is necessary to represent 
the relations gi(#i, ~) (i = I, 2) in the form of functions of the parameter #. Combining 
(3.2), (3.6), and (3~ and using the normalization condition : = I, we can write system 
(3.6)-(3.7) in the form 

~ (~) = ~ (c~,~7 ~ + ~ 7  ~ + ~ 7  i + c~7 ~ + c~,~7 ~) = 0 
(i = 1,2) .  ( 3 . 9 )  

In accordance with the first approximation [5] of the Lyapunov stability theorem, the 
solution (1.6)-(1.7) will be stable if the real parts of the eigenvalues of the Jacobian 

matrix I = [ a..I , where all = a~i(//)/0#l-i , ai2 = ~gi(#)/0(~#i -i) a2i = ag2(//)/o//i -i , a22 = 
@g2(#)/o(~#i-l), are negative. Considering that at each point (~i (n) , ~)(n)) with small # we 
have I = #z det l(/~l(n), ~b (n)) + O [ # } 3, we can write the stability conditions as follows: 
for steady equilibrium 

max (Vs~ ~), .us? )) < O, det [@(1 ~), ~J(~)) > O; (3.10) 

for periodic cycles 

m~x ( ,  ~o ~ ) ,  ~ R~ 4 ~)) < O, 
]Re (a(lnl) H- a(~))[>l(a2n + ~)o,2~ cos 0,5 arctg anion I" 

( 3 . 1 1 )  

Here, 69), ~9) are eigenvalues of the matrix 

I ( ~  ~ ,  ,(")); ~ ?  = ~ (~i ~,  ,r  
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a ,  = (Re (a(t]) - -  a,~.~(")"z)) - -  (Im (all) - -  a~)) )  ' + 4 Re "(") I~o ,,(n) ~12 ~ '~  ~21 - -  

4 hn  a(l~ ) Im ~(n). [$n :2 Re (a(~) a~  ) ) I m  (ai~) a~; )) -'b 

+ 4 Fie a12-(?I) 111iu U21-(rt) .~_ 4 lie a~(~ ) Im a(~ ). 

Conditions (3.10) are valid if and only if curves (3.6)-(3.7) intersect transversely 
on the plane (#i, ~), i.e., if det I 0 m 0, where 

l ag, (~q, ~)I@~ 
I~ = ag~(pa, ~)lO~ 

aga (~, ~)/a# l 
ag~ (~1, r162 I" 

When Eq. (3.8) has only one real root, the intersection is always exact (if curves 
(3.6) and (3.7) touch, then we already have two real roots). If curve (3.6) and (3.7) have 
a common tangent at the point of intersection, then it is necessary to go back and 
reexamine the equation which follows (3.4). If in (3.11) max (# Re sl(n), # Re s2(n)) = O, 
and the zero is simple, then we see the limit cycle - Hopf bifurcation [2]. 

An analysis of the stability of the thermal state of a fluid in an annular channel 

with RI = I, Rz = 4.07, ~ = 0.02, E 1 = h2 >> 1 shows that (s1(i), s2(Z)) = (28.80, -0.25), 
(s1(2) , sz(Z)) = (4.72 - 20.25i, -20.08 - 4.74i), (sz(3) , s2(3) ) = (4.72 + 20.25i, -20.08 + 

4.74i). Thus, the equilibrium state and the oscillatory cycles are unstable on either side 

of the critical point # = 0. At R 1 = i, R2 = 2.55, ~ = 0.02, hl = h2 >> i, calculations 
yield (s1(1), sz (I)) = (10 -2 , -3.10.I0-2), (si(2), s2(2) ) = (-4.71.10 .4 + 2.38.10-3i, -4.14-10 .2 - 

6.04.10-4i), (s1(3), sz(3)) = (-4.71.10 -4 - 2.38.10-3i, -4.14.10 -2 + 6.04.10-4i). Thus, the 

equilibrium state is unstable for any # > 0 and # < 0, while the oscillatory states are 
stable when # = 4a I - AL 2 > O. 

4. Isolated Solutions. The operator G(8, ~, A) contains the parameter A ~ 0, which 
eliminates bifurcation at the point (#, e) = (0, 0). As a result, a solution which 
branches at this point decomposes into isolated solutions. At A = 0, the solution 8 = 0 of 

the equation G(O, #, 0) = 0 becomes unstable when # passes through zero. In accordance 
with the Hopf theorem [2], this is equivalent to the point (#, 8) = (0, 0) being a double 

point. 
The inequality <0G(0, O, 0)/SA, y*kz> ~ 0 (k = i, 2) and the implicit function theorem 

guarantee the existence of the solution G(@, #, A) = 0 relative to A = &(#, a), which we 
seek in the form of a series in powers of # and a. 

We obtain the following system of equations from double differentiation of G(8, #, A) 

with respect to #, a at the point (#, ~) = (0, 0) and use of the identity aG(8, #, A(#, 
0))/O~ : 0, which follows from the definition of a double point 

OG(0, 0,0) a~O O2G(0'0'0) O ~ +  oG(O'O'O)O~A 0; (4.1) 
O0 a0 + 002 OA aa 2 = 

aG (0, O, O) a~A aG(0,0,0) a ~O a ~ G (0, 0, 0) @t + - - - - = 0 -  ( 4 . 2 )  
aO a~ as H- a~ as OA oft as 

This system can be solved only when the following conditions are satisfied for k = i, 2 

a 0 - , ~  /a 20 -* \ 
-'~8~' Y ~ /  = \ a - ~ '  yk~ / = O. 

The last relations, together with Eqs. (4.1)-(4.2), determine the first two nontri- 
vial terms in the expansion of the function in powers of #, a: 

t [ < a2 G (o, o, o)lae2e~, ~,~> ~ 
A ( ~ t ,  ~)  = - - - ~  . . . . . .  ~, . - : - : - : 7 ~ .  - , - -  + 2 L <oG (o, o, o)laA, ~k~> 

<a 2 G (o, o, o ) / o o  6011o 1, yt{l> 

<oc (o, o, o)/aa, ~> 
~ ]  (k= ~,2). (4.3) 

Equations (4.3) make it possible to find the solutions of (1.5), (1.6) on the plane (~, ~). 

590 



Substitution of the expressions for 01, Y*kl (k = I, 2) into (4.3) and use of the normaliza- 

tion condition a = i yield 

g, (~,,, !0 + a <a~ (o, o, o)/aa, ~*,~> = o; (4.4) 

where gi(~1, ~) are determined from (3.6)-(3.7). 
Changing over from (4.4)-(4.5) to the equivalent cubic equation leads to (3.8). 

Here, the coefficients b2, b 3 are the same as in (3.8), while b 0 and b I have the form 

(4.5) 

--~ --i --i bo = - -  ( ~  + A <a~ (o, o, o)/aA, ,~>)  ~,~ ~ ,  

b~ = ( q~ + A <8G (0~ O, O)/8A, ,~'1> - -  r ~) c7#. 

The subsequent analysis of the stability of the solutions of (1.5), (1.6) is similar 
to the procedure described in Part 3 for the bifurcative solution. The distribution of the 
real and complex solutions of system (4.4)-(4.5) is the same as for (3.6)-(3.7), although 

they need not coincide. 
Calculations performed for RI = i, R2 = 2.55, ~ = 0.02, E I = E 2 >> I, $G(0, 0, 0)/3& = 

a0, ~ = 0, gave (#i (I), ~(I)) = (3.10, 0.64), (sl (I), s2(1) ) = (0.14, - 0,76), (#i(2) ~(2)) = 
(0.22 + 0.74i, 1.51 + 15.53i), (sl (2), s2 (2)) = (-9.14.10 -3 - 3.40.i0-2i, -1.46 + 0.13i); the 

solution which is complex-conjugate to (~i (2), ~(z)) is not presented here. It follows from 
this that the stationary state is unstable for any #, while the periodic cycles are stable 

when # > 0. 
Subsequent calculations performed with initial data that was the same as the above 

except for 8G(O, O, O)/3A = a 0 + ~ exp (~-I)~-4, ~ exp (E -I) = I, gave (#l (I), ~(i)) = (3.38, 
1.20), (sl (I), sz (I)) = (0.15, -0.82), (#i (2) , ~(2)) = (0.21 + 0.66i, 1.22 + 16.20i), (sl (2), 
Sz(2) ) = (-2.66.10 -3 - 3.08.10-2i, -1.60 + 9.60.i0-2i). The distribution of stability is the 

same as in the previous case. Further calculations showed that with unchanged RI = i, R2 = 
2.55, ~ = 0,02, E l = E 2 >> I, an increase in flow velocity up to q = ~ does not qualita- 
tively affect the pattern of stability distribution. This can be attributed to the fact 
that at E l = h2 >> i, the increase in the temperature of the fluid due to viscous drag is 
accompanied by intensive heat removal through the surface RI, R2, where the temperature is 
kept equal to zero (O = 0). At the same time, it must be pointed out that the power of the 
attractor corresponding to the unstable equilibrium state increases with an increase in 
flow velocity. 

The conclusion that there is no qualitative change in the pattern of stability 
distribution with a change in flow velocity of course applies only to the specific 
parameters used in the calculations. For other problem parameters, a change in flow 

velocity may indeed lead to a qualitative change in stability distribution. Thus, at R I = 
i, R2 = 2.30, hl = h2 >> i, system (4.4)-(4.5) becomes degenerate and (4.3) has only one 
solution #a - (0.17 - 0.34~)~ 2 - 3.18 - 0.849 exp (~-i) = 0. It follows from this that, for 
certain values of 8, there is a threshold value of ~ at which ~ changes sign. 

Proceeding on the basis of the above analysis of the solutions of system (1.5)-(1.6), 
it is tempting to conclude the following. A flow of an initially uniformly heated fluid in 
which temperature is increasing due to exothermic reactions and viscous drag can be in one 
of three thermal states: an unstable state of thermal equilibrium and two periodic cycles 
which may be either stable or unstable. With the problem formulated as it was here 
(without allowance for combustion of the reactants during the reactions), a limiting cycle 
is possible. There are cylinder diameters (such that one of the two eigenvectors corre- 
sponding to each paired eigenvalue a n (n = i, 2,...) of the generating operator (1.8) is 
equal to zero) for which the fluid will have only one steady state of thermal equilibrium. 
This state may be either stable or unstable. 
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MODELING THERMAL PROCESSES IN THE SHOCK LOADING OF POROUS MATERIALS 

A. I. Byvshikh, V. I. Kirko, 
and N. I. Pak UDC 535.211:536.4 

Shock loading of porous materials within the pressure range 1.5-3 GPa makes it possi- 
ble to obtain monolithic products [1-3]. Higher loading pressures (30-100 GPa) are used to 
study the equations of state of different substances under critical conditions [4]. It was 
shown in [5] that shock loading is characterized by highly nonequilibrium thermal process- 
es. This high level of disequilibrium is due both to the sudden compression of the 
substance behind the shock wave (SW) and to the effect of powerful heat flows on the 
surface of particles of the substance. At the low pressures characteristic of powder 
compaction methods, thermal nonequilibrium is manifest in fusion of the particle surface 

[2, 3]. 
An increase in pressure or porosity in the pressing operation leads ~o an increase in 

the proportion of the substance that is converted to the liquid state and to a further in- 

tensification of heat release at the boundaries of particles. In this case, it is 
necessary to recognize the existence of a region of the substance in which the temperature 
exceeds the boiling point at normal pressure. Two layers can in turn be discerned within 
this region. In the first layer, internal energy is greater than the energy of vaporiza- 
tion, while in the second layer the former is less than the latter. When pressure is 
relieved, the molten layer - in which the acquired internal heat energy exceeds the energy 
necessary for vaporization - changes to the vapor state. Bulk boiling should be expected 
to occur in the second layer. The state of the substance behind the shock front actually 
depends on the ratio t*/T (where t* is the time of arrival of the unloading wave, T = R2/~ 
is the characteristic time of establishment of thermal equilibrium in an individual 
particle of radius R, and a is the diffusivity of the particle). At t*/r << I, there is not 
sufficient time for the particle to be heated uniformly, and vaporization and boiling may 
take place in the superheated material after the arrival of the unloading wave. When t*/T>> 
i, an equilibrium temperature is established in the particle. Here, the state of the sub- 
stance after arrival of the unloading wave is determined by the p-v diagram. 

When the energy of the SW is low, the substance remains in the solid state. If the 
adiabatic curve corresponding to unloading passes through a two-phase region, then the sub- 
stance is dispersed. When the curve passes above the critical point, the material vapor- 

izes. 
Thus, by varying the energy expended in shock compression and the parameter t*/T, it 

is possible to use the shock loading of porous materials to obtain different final states: 
monolithic solids, finely dispersed powders with a developed porous surface, ultradispersed 

particles, or a dense plasma. 
We will examine the dynamic loading of powdered metal by a plane shock wave. The 

internal energy of the substance a behind the front of the SW can be determined from the 
Hugoniot curve a = (p + p0)(i/P00 - i/p)/2 and represented in the form of the sum: a = ag + 
a d + a t . Here, P00 and p are the initial and final densities ahead of and behind the shock 
front; p is pressure; ag, ad, and a t are the fractions of energy expended by the SW on 
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